The probability distribution in Eq. (30) of the original paper should read

\[p_{\eta}(x) = \frac{1}{\sqrt{2\pi \Delta^2}} \exp \left[-\frac{(x - \sqrt{\eta}x_0)^2}{2\Delta^2} \right], \]

such that the resulting maximum likelihood estimate (MLE) for the quantum efficiency \(\eta \), i.e., \(\eta_{ML} = \arg \max L(\eta) \), is given by the (unique) solution in \([0,1]\) of the algebraic equation

\[
(1 - \eta + e^{-2r}) \left[1 - 4x_0 \left(x_0 - \frac{x}{\sqrt{\eta}} \right) \right] = 4(x^2 + \eta x_0^2 - 2\sqrt{\eta}x_0x).
\]

Figure 5 and the physical conclusions remain unaltered, whereas Eq. (32) of the original paper is no longer valid.